Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Immunol ; 14: 1155770, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-20244319

RESUMEN

Introduction: Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results: We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion: We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , COVID-19/inmunología , Interleucina-6 , Síndrome Post Agudo de COVID-19/inmunología , SARS-CoV-2
2.
Cell Rep ; 42(3): 112167, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2240078

RESUMEN

mRNA vaccines are effective in preventing severe COVID-19, but breakthrough infections, emerging variants, and waning immunity warrant the use of boosters. Although mRNA boosters are being implemented, the extent to which pre-existing immunity influences the efficacy of boosters remains unclear. In a cohort of individuals primed with the mRNA-1273 or BNT162b2 vaccines, we report that lower antibody levels before boost are associated with higher fold-increase in antibody levels after boost, suggesting that pre-existing antibody modulates the immunogenicity of mRNA vaccines. Our studies in mice show that pre-existing antibodies accelerate the clearance of vaccine antigen via Fc-dependent mechanisms, limiting the amount of antigen available to prime B cell responses after mRNA boosters. These data demonstrate a "tug of war" between pre-existing antibody responses and de novo B cell responses following mRNA vaccination, and they suggest that transient downmodulation of antibody effector function may improve the efficacy of mRNA boosters.


Asunto(s)
Vacuna BNT162 , COVID-19 , Animales , Humanos , Ratones , COVID-19/prevención & control , Inmunización Secundaria , Anticuerpos , ARN Mensajero/genética , Vacunas de ARNm , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Front Med (Lausanne) ; 9: 1003103, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2065585

RESUMEN

Introduction: Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC) in ∼30% of all infected individuals. Here, we present a case of PASC in a patient with rheumatoid arthritis characterized by viral persistence in the nasopharynx for 6 months after acute infection. We demonstrate transient disappearance of antigen persistence and decreased antiviral and autoimmune T cell responses after nirmatrelvir/ritonavir and tocilizumab treatment. Case presentation: A 37-year-old female with a 7-year history of rheumatoid arthritis enrolled in a COVID-19 research study was found to continuously test SARS-CoV-2 antigen positive in the nasopharynx for 6 months after acute infection. She simultaneously presented with new-onset PASC symptoms including chronic occipital headache and periods of intense fatigue 8 weeks after acute infection. The patient was prescribed nirmatrelvir/ritonavir to treat SARS-CoV-2 persistence at 3.5 months post-acute infection and observed a reduction in PASC symptoms 3 weeks after completing antiviral treatment. After resurgence of PASC symptoms, she stopped treatment with tocilizumab for rheumatoid arthritis to attempt complete SARS-CoV-2 viral clearance. The severity of the patient's PASC symptoms subsequently increased, and she developed new-onset brain fog in addition to previous symptoms, which resolved after resumption of tocilizumab treatment. Assessment of adaptive immune responses demonstrated that nirmatrelvir/ritonavir and tocilizumab treatment decreased antiviral and autoreactive T cell activation. After resuming tocilizumab treatment, the patient's PASC symptoms were significantly reduced, but nasopharyngeal antigen positivity remained. Conclusion: These data suggest that nirmatrelvir/ritonavir should be considered in the treatment of PASC in patients who have SARS-CoV-2 antigen persistence, though care must be taken to monitor the patient for symptom resurgence or viral reactivation. In addition, the IL-6 inhibitor tocilizumab may ameliorate PASC symptoms in patients with persistent headache, fatigue, and brain fog.

4.
J Clin Invest ; 132(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2064379

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Nucleocápside , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales , COVID-19/terapia , Vacunas contra la COVID-19 , Nucleocápside/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
Geroscience ; 44(3): 1241-1254, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1826851

RESUMEN

BACKGROUND: Persistent viral RNA shedding of SARS-CoV-2 following COVID-19 has increasingly been recognized, with limited understanding of its implications on outcomes in hospitalized COVID-19 patients. METHODS: We retrospectively assessed for persistent viral shedding across Northwestern Medicine Healthcare (NMHC) patients between March and August 2020. We assessed for predictors of persistent viral shedding, in-hospital delirium, and six-month mortality using binary logistic regression. RESULTS: Of the 2,518 hospitalized patients with an RT-PCR-confirmed diagnosis of COVID-19, 959 underwent repeat SARS-CoV-2 RT-PCR at least fourteen days from initial positive testing. Of those, 405 (42.2%) patients were found to have persistent viral shedding. Persistent viral shedding was associated with male sex, increased BMI, diabetes mellitus, chronic kidney disease, and exposure to corticosteroids during initial COVID-19 hospitalization. Persistent viral shedding was independently associated with incidence of in-hospital delirium after adjusting for factors including severity of respiratory dysfunction (OR 2.45; 95% CI 1.75, 3.45). Even after adjusting for age, severity of respiratory dysfunction, and occurrence of in-hospital delirium, persistent viral shedding remained significantly associated with increased six-month mortality (OR 2.43; 95% CI 1.42, 4.29). CONCLUSIONS: Persistent viral shedding occurs frequently in hospitalized COVID-19 patients and is associated with in-hospital delirium and increased six-month mortality.


Asunto(s)
COVID-19 , Delirio , Delirio/epidemiología , Humanos , Incidencia , Masculino , ARN Viral/análisis , Estudios Retrospectivos , SARS-CoV-2 , Esparcimiento de Virus
6.
Neurol Neuroimmunol Neuroinflamm ; 9(3)2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1731569

RESUMEN

BACKGROUND AND OBJECTIVES: Although patients hospitalized with COVID-19 frequently present with encephalopathy, those with mild initial COVID-19 disease who never required hospitalization also often develop neurologic symptoms as part of postacute sequelae of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection (neuro-PASC). The pathogenic mechanisms of COVID-19 encephalopathy and neuro-PASC are unknown. We sought to establish biochemical evidence of CNS injury in those patients and their association with neuropsychiatric manifestations and SARS-CoV-2 antigenemia. METHODS: We recruited hospitalized, posthospitalized, and nonhospitalized patients with confirmed diagnosis of COVID-19 with neurologic symptoms in addition to healthy control (HC) subjects. Plasma neurofilament light chain (pNfL), plasma glial fibrillary acidic protein (pGFAP), and plasma SARS-CoV-2 Nucleocapsid antigen (pN Ag) were measured by HD-X Simoa analyzer (Quanterix) and compared with neuropsychiatric symptoms, patient-reported quality-of-life measures, and standardized cognitive assessments. Neuroglial scores (pGFAP/pNfL) were calculated to estimate the relative contribution of astroglial and neuronal involvement. RESULTS: We enrolled a total of 64 study participants, including 9 hospitalized patients with COVID-19 encephalopathy (CE), 9 posthospitalization neuro-PASC (PNP) patients, 38 nonhospitalized neuro-PASC (NNP) patients, and 8 HC subjects. Patients with CE were older, had higher pNfL and pGFAP concentrations, and more frequent pN Ag detection than all neuro-PASC groups. PNP and NNP patients exhibited similar PASC symptoms, decreased quality-of-life measures, and cognitive dysfunction, and 1 of the 38 (2.6%) NNP patients had pN Ag detectable 3 weeks postsymptoms onset. Patients with neuro-PASC presenting with anxiety/depression had higher neuroglial scores, which were correlated with increased anxiety on quality-of-life measures. DISCUSSION: pNfL, pGFAP, and pN Ag measurements indicate neuronal dysfunction and systemic involvement in hospitalized COVID-19 patients with encephalopathy. Detection of SARS-CoV-2 N Ag in blood 3 weeks after symptoms onset in a nonhospitalized patient suggests that prolonged antigenic stimulation, or possibly latent infection, may occur. Anxiety was associated with evidence of astroglial activation in patients with neuro-PASC. These data shed new light on SARS-Cov-2 neuropathogenesis and demonstrate the value of plasma biomarkers across the COVID-19 disease spectrum.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Biomarcadores , COVID-19/complicaciones , Progresión de la Enfermedad , Humanos , SARS-CoV-2
7.
J Clin Invest ; 131(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1463085

RESUMEN

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have shown efficacy against SARS-CoV-2, it is unknown if coronavirus vaccines can also protect against other coronaviruses that may infect humans in the future. Here, we show that coronavirus vaccines elicited cross-protective immune responses against heterologous coronaviruses. In particular, we show that a severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) vaccine developed in 2004 and known to protect against SARS-CoV-1 conferred robust heterologous protection against SARS-CoV-2 in mice. Similarly, prior coronavirus infections conferred heterologous protection against distinct coronaviruses. Cross-reactive immunity was also reported in patients with coronavirus disease 2019 (COVID-19) and in individuals who received SARS-CoV-2 vaccines, and transfer of plasma from these individuals into mice improved protection against coronavirus challenges. These findings provide the first demonstration to our knowledge that coronavirus vaccines (and prior coronavirus infections) can confer broad protection against heterologous coronaviruses and establish a rationale for universal coronavirus vaccines.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Animales , Linfocitos T CD8-positivos/citología , Reacciones Cruzadas , Mapeo Epitopo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA